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Abstract. The paper deals with the axisymmetric unsteady problem of the collision of two circular plates, one of
which is located initially on the surface of a shallow liquid layer and another is falling down on it. The presence of
air between the colliding plates is taken into account. Both the air and the liquid are assumed ideal and incompress-
ible and their flows potential. The flows in the liquid layer and between the p1ates are assumed one-dimensional
with corrections for three-dimensional effects close to the plate edges. The present study is focused on the stage of
strong interaction between the plates, during which the floating plate is accelerated and the hydrodynamic pressure
in the liquid layer takes its maximum value. A simplified model of this interaction is suggested. Velocities of the
plates and the hydrodynamic pressure on the bottom of the liquid layer are analytically estimated and compared
with experimental results. The model provides the maximum of the hydrodynamic pressure, which can be used at
the design stage. It is shown that the air flow between the moving plates is of major importance to explain the low
amplitude of the measured hydrodynamic pressures.
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1. Introduction

The axisymmetric unsteady problem of the collision of two circular plates, one of which is
placed initially on the boundary of a liquid layer, is considered. This study was motivated
by experiments performed by Ermanyuk [1] with two colliding plates (experimental setup
is shown in Figure 1). An analysis of the experimenta1 results is given by Ermanyuk and
Ohkusu [2]. The authors of the present paper participated in the design of these experiments.
An original purpose of the experiments was to measure acoustic pressures in a shallow liquid
layer caused by the impact onto a floating plate. The hydrodynamic pressures were expected
to be much higher than the ‘water hammer’ pressure ρVnc0, where ρ is the liquid density,
Vn is the normal velocity of the body surface at the impact instant and c0 is the sound speed
in the liquid at rest, owing to multiple reflections of the shock wave generated by the impact
from both the bottom and the disk. For a circular disk, the radius of which R is much greater
than the liquid depth h, it was expected that the maximum of the hydrodynamic pressure
occurs at the center of the disk at the time instant, when the relief waves originated at the
periphery of the floating disk come to its center. However, the experiments revealed much
smaller pressures than expected. Moreover, the measured pressures were smaller than the
‘water hammer’ pressure, which should be expected for a liquid of infinite depth in the case
of an impulsive start of a floating plate. A wavelet analysis of the pressure evolution was
performed in [2]. It was concluded that the main time-scale that corresponds to the maximum
of the wavelet spectrum is presumably defined by the effect of air flow from the gap between
the disks during the collision. The aim of the present paper is to show that the presence of the
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Figure 1. Experimental setup (form Ermanyuk [1]). Figure 2. Collision of two circular plate, the upper
of which is falling down due to gravity.

air between the colliding disks plays an important role and may control the amplitude of the
hydrodynamic loads.

In the problem of floating-body impact it is usually assumed that both the body and the
liquid are initially at rest and the body begins suddenly to move at a prescribed velocity. For
a liquid of infinite depth the maximum of the hydrodynamic pressure occurs during the initial
stage when the liquid compressibility is of major significance [3]. This maximum is known
as the ‘water hammer’ pressure, and is equal to ρc0Vn for impact velocities up to several
meters per second. In the case of a body floating on the water surface (ρ = 1000 kg m−3,
c0 = 1500 m sec−1) and starting suddenly to move down at a velocity of 1·7 m sec−1, we
obtain ρc0Vn = 2·6 × 106 N m−2. The velocity of 1·7 m sec−1 is that of a body falling due to
the gravity from the height of 15 cm. Such high pressures were not measured in experiments
by Ermanyuk [1]. It is usually believed that such high pressures are not detected due to poor
resolution provided by commonly used pressure gauges; this is the natural period of pressure
ganges used in the experiments may be greater than the duration of the acoustic pressures.
However, the experiments by Ermanyuk [1] were specially designed to measure such pressure
pulses of short duration. The present study is based on the idea that a flat disk falling down
cannot provide an impulsive start of the floating disk. It is shown that the presence of air
between the colliding plates leads to a finite acceleration of the floating disk. Even if the
acceleration is relatively high, the floating-disk motion still cannot be treated as impulsive and
the maximum of the hydrodynamic loads is dependent on the rate of the penetration-velocity
increase.

The air cannot escape immediately from the gap between the disks, which makes the
process of the body interaction longer and reduces the maximal acceleration of the floating
body. The presence of the air may be responsible for a reduction of the hydrodynamic loads
on the floating body. This effect can be explained even within the incompressible ideal-fluid
model of the air flow. In the case of two colliding plates one of which is at rest and another one
falling onto it vertically, this effect was studied qualitatively by Yih [4]. The latter problem
is revisited in Section 2, in order to evaluate the evolution in time of both the pressure in the
thin air layer between the plates and the thickness of this layer. The problem of two colliding
disks, one of which is initially at rest and free to move owing to another disk falling onto it
vertically, is analyzed in Section 3. The original problem of two circular plates, one of which
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floats initially on the surface of a thin liquid layer, is investigated in Section 4. The investig-
ation is focused on the pressure evolution in the liquid layer. The theoretical predictions are
compared to experimental results by Ermanyuk [1] for the pressure on the liquid bottom. The
theoretical pressures are slightly higher than the measured ones but the analysis explains well
the reduction of the loads due to finite acceleration of the floating plate. The presented model
can be used to estimate the maximal hydrodynamic pressures for two colliding bodies with
flat surfaces in the impact region. However, the model cannot predict oscillations after the
pressure peak, which are well-pronounced in the experimental curves and may be attributed
to the acoustic effects (see [2] for details).

2. Approximate model in the case of a fixed lower plate

Two circular plates, the lower of which is fixed and the upper is falling down on it due to
gravity, are considered (see Figure 2), The origin of the cylindrical coordinate system Orz is
taken at the centre of the lower plate. Initially (t = 0) the upper plate is placed at a distance
H0 above the lower one. The plates are of radius R and perfectly rigid. The elasticity of
the impacting plates is not taken into account in the present study. The interaction between
the plates can be neglected during the acceleration stage of the process, when the distance
H(t) between the plates is larger than or comparable with the plate radius R. At this stage
the upper plate falls down as if the fluid is unbounded. As a first-order approximation, the
velocity V (t) of the moving disk is given by the formula V (t) = gt , which does not account
for aerodynamic forces. If the presence of air between the plates is not taken into account,
the plates collide at the instant T = √

2H0/g with the velocity Vc = √
2gH0, where g is the

acceleration due to gravity. This is the case of rigid impact.
The presence of the air, which can be approximately neglected during the acceleration

stage, is of major significance during the next stage which is referred to as the interaction
stage. At the interaction stage the distance H(t) between the plates is much smaller than the
plate radius R,H(t)/R � 1, and the air is forced to flow from the region D(t) = {r, z|r <

R, 0 < z < H(t)} between the plates. The velocity of the falling plate decays due to its strong
interaction with the lower plate and is much smaller than the radial velocity of the air outflow.
This implies that the ‘thin-layer’ approximation can be used to describe both the air flow and
the pressure between the plates.

The resistance of the fluid outside D(t) to the flow from between the plates is assumed
negligible and is not taken into account below. This means, in particular, that the fluid particles,
which left the region D(t) at an instant τ , move thereafter at the velocity ur(R, τ), where
ur(r, t) is the radial velocity of the air flow in D(t). These particles form a jet, in which
the pressure is equal to the atmospheric pressure. Therefore, the pressure at the plate edge,
r = R, is also atmospheric at any instant of time within the considered approximation. This
assumption highly simplifies the analysis and is based on experiments with a plate falling onto
a table [4].

We assume that the air is an ideal and incompressible fluid and that its flow is potential.
Both viscous effects and the compressibility of the air may be of importance at the very final
stage, when the plates are very close to each other. The significance of both the viscous and
the elastic properties of the air in D(t) depends on the falling body mass M, the drop height
H0 and the plate radius R, and can be verified by analyzing the solution obtained within the
ideal and incompressible air model.
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Within the framework of these assumptions the axisymmetric air flow between the plates
during the interaction stage is described by the velocity potential φ(r, z, t), for which the
boundary-value problem has the form

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
= 0 (0 < z < H(t), 0 < r < R), (1)

∂φ

∂z
= 0 (z = 0, 0 < r < R), (2)

∂φ

∂z
= dH

dt
(t) (z = H(t), 0 < r < R), (3)

p(r, z, t) = −ρa

(
∂φ

∂t
+ 1

2
|∇φ|2

)
, (0 < z < H(t), 0 < r < R), (4)

p(R, z, t) = 0, (5)

where ρa is the air density and p(r, z, t) is the deviation of the pressure between the plates
from the atmospheric pressure.

The boundary-value problem (1–5) has to be solved together with the equation of the
falling plate motion, which follows from Newton’s second law

M
d2H

dt2
= −Mg + Fa(t), (6)

where Fa(t) is the aerodynamic force on the moving plate

Fa(t) = 2π

∫ R

0
rp(r,H(t), t)dr. (7)

Formally speaking, Equations (1–5) are valid only during the interaction stage, when H(t)/R

� 1. The duration of this stage is unknown in advance and has to be determined together with
the solution of the problem. Initial conditions for Equation (6) can be obtained by matching
the solution at the interaction stage with that at the acceleration stage. We use another idea
assuming that Equations (1–5) are valid during both the interaction and the acceleration stages.
If so, the initial conditions for Equation (6) have the form

H(0) = H0,
dH

dt
(0) = 0. (8)

It will be shown that the force Fa(t) in (6) evaluated with the help of Equations (1–5) and
(7), is much smaller than the gravity force Mg and Equation (6) can be approximated as
d2H/dt2 = −g during the acceleration stage. This implies that the initial conditions (8) for
the ‘thin-layer’ model (1–7) do not disturb essentially the motion of the falling plate at the
acceleration stage, when H(t) ≈ H0 − gt2/2.

Equations (1–3) are satisfied by the following function

φ(r, z, t) = − Ḣ

4H
(r2 − 2z2) + φ0(t); (9)

this can be verified by substitution. A dot stands for the time derivative. The pressure distri-
bution (4) is written as

p(r, z, t) = ρa

[
r2

(
Ḧ

4H
− 3Ḣ 2

8H 2

)
− z2 Ḧ

2H
− φ̇0(t)

]
, (10)
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where 0 < r < R and 0 < z < H(t). The second term in expression (10) for r = R can be
neglected in comparison with the first with a relative error of O(H 2/R2) during the interaction
stage. The boundary condition (5) is satisfied with the same relative error if one takes

φ̇0(t) = R2

(
Ḧ

4H
− 3Ḣ 2

8H 2

)

We obtain the approximate pressure distribution between the plates

p(r, t) ≈ ρa(R
2 − r2)

(
3Ḣ 2

8H 2
− Ḧ

4H

)
, (11)

which does not depend on the vertical coordinate z.
Substituting (11) in (7), we find

Fa(t) = π

8
ρaR

4

(
3Ḣ 2

2H 2
− Ḧ

H

)
. (12)

A force of the same magnitude acts also on the lower fixed plate.
Combining Equations (11) and (12), the formula for the pressure can be presented in the

form

p(r, z, t) = 8Fa(t)

πR2

(
1 − r2

R2

)
. (13)

It is seen that the pressure maximum, pmax = 8Fa(t)/(πR2), occurs at the centre of the region,
r = 0. The radial velocity of the air flow, ur = ∂φ/∂r, follows from (9) and is given by

u(r, t) = − Ḣ

2H
r (14)

with the outflow velocity ur(R, t) being −ḢR/(2H).
Substituting (12) in the motion equation (6) and introducing the non-dimensional variables

ζ(τ) = H(t)/H0 and τ = t/T , we arrive at the following problem with respect to the new
unknown function ζ(τ)(

1 + ε

ζ

)
ζττ = −2 + ε

3ζ 2
τ

2ζ 2
(τ > 0), (15)

ζ(0) = 1, ζτ (0) = 0, (16)

where the non-dimensional parameter

ε = πρaR
4

8H0M
(17)

is assumed to be much smaller than unity. In the case ρa = 1 kg m−3, R = 0·1 m, H0 = 0·15 m
and M = 2 kg, we have ε = 0·000131. During the acceleration stage, when ζ(τ) � ε

1
2 and

ε � 1, Equation (15) can be approximated as ζττ ≈ −2, which describes the motion of the
falling disk in the absence of aerodynamic forces acting on it.
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During the interaction stage, when ζ(τ) is small, an asymptotic solution of Equation (15)
as ε → 0 can be obtained. We introduce a new unknown function w(ζ ) = ζ 2

τ , the equation
for which

dw

dζ
= 3ε

ζ(ζ + ε)
w − 4ζ

ζ + ε
(18)

follows from (15). Conditions (16) yield

w(1) = 0. (19)

The solution of the linear problem (18) and (19) provides

dζ

dτ
= −2

ζ
3
2 (1 − ε2 − ζ − 2ε log ζ + ε2/ζ )

1
2

(ζ + ε)
3
2

, (τ > 0) (20)

ζ(0) = 1.

Therefore, the solution of the original problem (15) and (16) is given by quadrature

τ = 1

2

∫ 1

ζ

(v + ε)
3
2 dv

v
[
v(1 − ε2) − v2 − 2εv log v + ε2

] 1
2

. (21)

The right-hand side of Equation (20) is never equal to zero for 0 < ζ < 1, which implies
that the falling plate cannot change the direction of its motion. Formula (21) shows that the
distance H(t) between the plates decays as

H(t) ∼ H0 exp
(
−2t/

(
T ε

1
2

))
(22)

when t → ∞. This result was obtained directly from Equations (1–7) by Yih [4]. Therefore,
the velocity, at which the plates meet, is very small within the considered simplified model.
However, the main events occur well before the asymptotic formula (22) becomes valid.

In order to describe the details of the plate interaction, we note that formula (22) is valid
when ζ/ε � 1, which is the final stage of the interaction. When ε/ζ � 1, Equation (20)
provides

ζ(τ) ≈ 1 − τ 2. (23)

In dimensional variables the latter solution has the form H(t) ≈ H0−gt2/2 and corresponds to
the plate motion at the acceleration stage. Therefore, the well-pronounced interaction between
the plates occurs at the stage, when ζ(τ) = O(ε) as ε → 0.

We introduce the ‘inner’ variable σ = ζ/ε and divide the integration interval in (21) into
two parts (εσ,

√
ε) and (

√
ε, 1). Both integrals are analyzed asymptotically as ε → 0 and

σ = O(1). Omitting details of the asymptotic analysis, we present the final result

1

ε
[τ(εσ, ε) − τ∗(ε)] = G(σ) + O

(√
ε log ε

)
, (24)

G(σ) = 2 − σ

2
√

σ

√
1 + σ − 3

2
log

(√
1 + σ + √

σ
)

, (25)
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Figure 3. Non-dimensional aerodynamic force as func-
tion of the stretched time.

Figure 4. Acceleration of floating plate by another
one falling on it.

τ∗(ε) = 1 − 3

4
ε log ε + ε

(
log 2 − 3

4

)
.

The function τ∗(ε) defines the time shift. The asymptotic solution (24) was justified with
the help of direct numerical simulation of Equation (20) for ε of the order of O(10−4). It
was shown that the difference between these two solutions is negligibly small. We conclude
that the well-pronounced interaction between the plates occurs for distances of the order of
O(εH0) and the duration of this stage is of the order of O(εT ).

When ζ = εσ , σ = O(1) and ε → 0, formula (20) gives the velocity of the moving plate

dH

dt
≈ −√

2gH0

(
σ

σ + 1

) 3
2

(26)

and formula (15) gives the acceleration of this plate as

d2H

dt2
≈ 3g

ε

σ 2

(σ + 1)4
. (27)

It is seen that the plate acceleration at the interaction stage is positive and is much greater than
the acceleration due to gravity. The falling plate acceleration takes its maximal value 3g/(16ε)

at σ = 1. The aerodynamic force Fa(t) given by (12) is equal approximately to

Fa(t) ≈ 3

ε
Mg

σ 2

(σ + 1)4
(28)

during the interaction stage. The maximum of the aerodynamic force 3Mg/(16ε) is much
greater than the gravity force Mg. Figure 3 shows the non-dimensinonal quantity
εFa(t)/(3Mg) as the function of the ‘inner’ stretched time ti = (τ − τ∗)/ε. In stretched
variables the maximum of the function, 1/16, occurs at ti = G(1).

The pressure between the plates is maximal at the plate centre, where

p(0, t) ≈ 24Mg

πεR2

σ 2

(σ + 1)4
(29)
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to leading order as ε → 0. It is seen that the pressure cannot be higher than (12M2gH0)/(π
2ρa

R6). The air can be treated as incompressible if the latter quantity is much smaller than the
product ρac

2
a , where ca is the sound speed in the air, ca = 345 m sec−1. This condition yields

M2H0R
−6 � π2

12g
ρ2

ac
2
a.

The right-band side of the inequality is equal approximately to 1686000 kg2 m−5 for ρa =
1·29 kg m−3 and g = 9·81 m sec−2, which implies that the air compressibility can be safely
neglected for light falling plates. When ε is very small, the distance between the plates at
the interaction stage is also small and the viscious effects have to be taken into account.
This problem is not considered here. We conclude that the simple formulae (26–29) provide
approximate description of the plate interaction if the falling plate is light.

3. Acceleration of circular plate

We consider here the same problem as that of Section 2 but now the lower plate is free to move
(see Figure 1). The lower plate of mass m is initially at rest. Its weight is balanced by a weak
elastic thread [1]. The motion of this plate is initiated by its interaction with another circular
plate of the same radius R, which is falling down from a height H0. We consider the interaction
stage of the process, during which the lower disk is accelerated and its displacement z0(t) is
so small that the restoring force due to the elastic thread can be neglected, Only the flow of the
air between the plates is taken into account. The distance H(t) between the plates is equal to
z1(t) − z0(t), where H0 − z1(t) is the displacement of the falling plate, z0(0) = 0, ż0(0) = 0,
z1(0) = H0 and ż1(0) = 0.

In the same manner as it was done in Section 2 we obtain the velocity potential between
the moving plates in the form

φ(r, z, t) = − Ḣ

4H

[
r2 − 2(z − z0(t))

2] + ż0z + φ0(t)

and the air pressure as

p(r, z, t) = ρa

[
r2

(
Ḧ

4H
− 3Ḣ 2

8H 2

)
− (z − z0(t))

2 Ḧ

2H
− z̈0z − 1

2
ż2

0 − φ̇0(t)

]
, (30)

where z0(t) < z < z1(t). The second, third and fourth terms in (30) can be neglected com-
pared to the first one with a relative error of O(H 2/R2) during the interaction stage when
z − z0(t) = O(H), ż0(t) = O(Ḣ ), z̈0(t) = O(Ḧ) and H/R � 1. The boundary condition
p(R, z, t) = 0 and Equation (30) provide

φ̇(t) = R2

(
Ḧ

4H
− 3Ḣ 2

8H 2

)
+ O

(
H 2

R2

)
.

The obtained approximate formula for the pressure between the plates is identical to (11).
We conclude that with a relative error up to O(H 2/R2), the pressure distribution between the
moving circular plates depends on the distance between them but not on their relative motions.
In particular, the aerodynamic force, Fa(t) acting on the plates is given by Equation (12),
where now H(t) = z1(t) − z0(t).
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Equations of the plate motion

M
d2z1

dt2
= −Mg + Fa(t), (31)

m
d2z0

dt2
= −Fa(t), (32)

where it has been taken into account that aerodynamic forces of same magnitude Fa(t) act on
both the upper and the lower plates and the weight of the lower plate is balanced by the elastic
thread, and the equation for the distance between the plates H(t) are as follows:

Mν
d2H

dt2
= −Mνg + Fa(t), ν = m

m + M
. (33)

Equation (33) is identical to Equation (6), where Fa(t) is given by (12), derived for the case
of a fixed lower plate. It is seen that, in the case of a free lower plate, the evolution of the
distance H(t) between the plates is the same as that in the problem of a fixed lower disk, but
for which the mass of the falling plate is reduced by a factor ν. In particular, the asymptotic
formulae (24–29) with the reduced mass of the falling plate are also valid for the present
problem. Formula (26) shows that the relative difference between the velocities of the plates
is less than 1% when σ < 1

20 . Therefore, we can conclude that the plates move together at the
end of the interaction stage, when the distance between the plates is less than εm/20, where
εm is given by formula (17) with M substituted by Mν. However, formula (26) says nothing
about the final velocity vf of the plate motion.

In the case of rigid impact, when the presence of air is not taken into account, the mo-
mentum conservation law yields√

2gH0M = (M + m)vR
f , (34)

where vR
f is the velocity of the plates after the impact and

√
2gH0 is the velocity of the

falling plate before the impact. Equation (34) introduces the quantity vR
f . Substituting (12)

in Equation (32) and integrating the latter one with respect to time, we obtain with the help of
(20) and (34)

−ż0(t) = vR
f

[
εm

√
g(ζ, εm)

(ζ + εm)
3
2

+ εm

2

∫ 1

ζ

√
g(u, εm)du

u(u + εm)
3
2

,

]
(35)

where g(ζ, ε) = ε2 + ζ(1 − ε2 − ζ − 2ε log ζ ) and ζ = H/H0. During the interaction stage,
when ζ = εmσ and σ = O(1), formula (35) can be simplified to

−ż0(t) = vR
f

[
1 −

(
σ

σ + 1

) 3
2

+ O(εm)

]
,

when εm → 0. It is seen that the presence of air does not change the final velocity of the plate
motion but makes the interaction smooth in contrast to the rigid-impact case.

Integrating Equation (32) twice with respect to time and taking into account the initial
conditions and Equations (12), (20), (21) and (34), we find

z0(t) = 1

2
εmvR

f T

[
log ζ − 1

2

∫ 1

ζ

(∫ ω

ζ

(v + εm)
2
2 dv

v
√

g(v, εm)

) √
g(ω, εm)dω

ω(ω + εm)
3
2

]
,
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where the double integral is of the order of O(1) as εm/ζ = O(1), i.e., during both the
acceleration and the interaction stages. Therefore, the displacement of the lower plate is given
approximately as

z0(t) = 1

2
εmvR

f T log ζ + O(εm).

By the time the difference between the plate velocities drops down to 1%, we have ζ ≈ εm/20
and

|z∗
0| = 1

2
vR

f T εm log
20

εm

.

When M = 2 kg, m = 0·22 kg, H0 = 15 cm and R = 10 cm, one gets εm ≈ 0·00132, vR
f ≈

1·55 m sec−1, T = 0·175 sec and |z∗
0| ≈ 2 mm. Therefore, the interaction stage lasts several

milliseconds and the displacement of the lower plate at the end of this stage is estimated as
2 mm. The plates move as a whole at the velocity vR

f at the end of the interaction stage.
We can conclude that, from a kinematic point of view, the assumption of rigid type of plate
collision (34) provides a good approximation of the plate velocity after impact. However, from
a dynamic point of view, the presence of air leads to a finite acceleration of the lower plate
and to finite forces between the plates during their interaction.

4. Impact onto floating circular disk

We consider the unsteady problem of acceleration of a floating circular disk of radius R by
another disk of the same radius falling on it (see Figure 4). The initial stage of the flow, during
which the hydrodynamic pressure in the liquid layer of thickness h takes its maximum value,
is studied. The liquid layer is assumed to be thin, h/R � 1, allowing us to use the shallow-
water approximation for the liquid flow beneath the plate. We assume that the duration of the
initial stage is greater than the time scale R/c0 of acoustic effects in the liquid. In the the
case of water, c0 = 1500 m sec−1, and R = 10 cm, we have R/c0 ≈ 7 × 10−5 sec. The
weight of the floating plate is balanced by a weak elastic thread which does not affect the
plate displacement during the initial stage. The draft of the floating plate is zero. The initial
stage, during which the floating plate is accelerated, is of short duration (see Section 3) and
the displacement of the floating plate is small. That is why we can neglect the deformation of
the liquid layer during this stage, linearize the boundary conditions and impose them on the
initial position of the liquid boundary z = 0. Moreover, the equations of the liquid flow can
also be linearized.

The liquid flow is described by the velocity potential ϕ(r, z, t), which satisfies the follow-
ing equiations

∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ ∂2ϕ

∂z2
= 0 (−h < z < 0, r > 0), (36)

∂ϕ

∂z
= ż0(t) (z = 0, 0 < r < R), (37)

∂ϕ

∂z
= 0 (z = −h, r > 0), (38)
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ϕ = 0 (z = 0, r > R), (39)

ϕ → 0 (r → ∞), (40)

where z0(t) is the displacement of the floating disk. It is seen that

ϕ(r, z, t) = ż0(t)ϕ̃(r, z) (41)

with ϕ̃(r, z) satisfying Equations (36), (38–40) and the boundary condition ∂ϕ̃/∂z = 1 on the
disk. During the initial stage the pressure distribution p�(r, z, t) in the liquid layer is given as

p�(r, z, t) = −ρz̈0(t)ϕ̃(r, z). (42)

Correspondingly, the hydrodynamic force F�(t) on the floating disk is defined by

F�(t) = −2πρz̈0(t)

∫ R

0
ϕ̃(r, 0)rdr (43)

within this approximation. Equation (43) can be rewritten as

F�(t) = −z̈0(t)Ma, (44)

where Ma is the added mass of the floating disk.
The displacement z1(t) of the falling plate is described by Equation (31) with the aerody-

namic force Fa(t) given by (12) and H(t) = z1(t) − z0(t) being the distance between the
plates at time t . The motion of the floating plate is governed by the equation

m
d2z0

dt2
= −Fa(t) + F�(t) (45)

with the hydrodynamic force F�(t) given by (44). Hence, Equation (45) can be written in the
form

(m + Ma)
d2z0

dt2
= −Fa(t), (46)

which is identical with (32). The motion of the floating plate is described by the same equation
as if the plate were free but of mass equal to m + Ma.

Equations (42) and (46) yield

p�(r, z, t) = ρFa(t)

m + Ma

ϕ̃(r, z). (47)

The function Fa(t) is given by (12), where H = H0ζ(τ) and ζ(τ) is defined by Equations (15)
and (16) with ε being now

ε = πρaR
4(m + M + Ma)

8H0M(m + Ma)
. (48)

The velocity potential ϕ̃(r, z) was obtained by Vorovich and Yudovich [5] in the case of large
thickness of the liquid layer, h/R > 2

π
log 2, and by Chebakov [6] for a liquid layer of small

thickness, h/R < 1. The second-order approximation of the potential ϕ̃(r, z) as h/R →
0 is derived below by means of an asymptotic method which can be helpful to treat more
complicated shapes of a plate floating on a thin liquid layer.
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Figure 5. Decomposition of the thin region for asymp-
totic analysis of flow within it.

Figure 6. Pressure at the center of the floating plate
in the case of the drop height of 15 cm and water
depth of 2 cm [1 kgf cm−2 = 9 · 81 × 104 Nm−2].

In order to construct the approximate solution of the boundary-value problem for the po-
tential ϕ̃(r, z), the method of matched asymptotic expansions is used. This method was used
by Korobkin [7, 8] to study the hydraulic stage of the impact onto a shallow liquid layer. The
flow region, r > 0, −h < z < 0, is divided into the following three parts shown in Figure 5:
(I) the region beneath the floating plate; (II) the edge region and (III) the outer region.

In region I, the potential ϕ̃(r, z) is sought in the form

ϕ̃(r, z) = ϕ̃0(r) + ϕ̃1(r)(z + h) + 1

2
ϕ̃2(r)(z + h)2 + . . . , (49)

where r = O(R), z = O(h) and h/R � 1. Substituting (49) in the Laplace equation (36) and
in condition (38), we find

ϕ̃1(r) ≡ 0, ϕ̃2(r) = −ϕ̃"
0(r) − r−1ϕ̃

′
0(r). (50)

A prime stands for the derivative with respect to the radial coordinate r. The condition ∂ϕ̃/∂z =
1 on the floating plate for z = 0, r < R and Equations (49) and (50) provide

ϕ̃"
0(r) + r−1ϕ̃

′
0(r) = −h−1. (51)

The solution of Equation (51 ) that is bounded in region I has the form

ϕ̃0(r) = − r2

4h
+ A. (52)

Substituting (52) in (49) and taking (50) into account, one gets

ϕ̃(r, z) = − r2

4h
+ A + 1

2h
(z + h)2. (53)

It is worth noticing that ϕ̃n(r) ≡ 0 for n ≥ 3. The constant A has to be determined from the
matching condition between the solutions calculated in regions I and II. Equations (49) and
(53) explain well the use of solution (9) in the air-flow problem. The potential of the flow
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(53) in region I is not valid close to the region boundary, r = R, where the flow is essentially
two-dimensional.

In region III, where r = O(R), z = O(h) and (r − R)/h � 1, the liquid remains at rest.
It can be shown that ϕ̃(r, z) = O(exp[−π(r − R)/(2h)]) in this region.

In region II, the flow is described by the stretched ‘inner’ variables ξ = (r−R)/h, η = z/h

and ϕ̃(R + hξ, hη) = hϕ̂(ξ, η, δ), where δ = h/R is a small parameter. The ‘inner’ potential
ϕ̂(ξ, η, δ) satisfies the equations

∂2ϕ̂

∂ξ 2
+ ∂2ϕ̂

∂η2
= − δ

1 + δξ

∂ϕ̂

∂ξ
(−1 < η < 0,−∞ < ξ < ∞), (54)

∂ϕ̂

∂η
= 0 (η = −1), (55)

ϕ̂ = 0 (η = 0, ξ > 0), (56)

∂ϕ̂

∂η
= 1 (η = 0, ξ < 0), (57)

ϕ̂ → 0 (ξ → +∞), (58)

ϕ̂ ∼ 1

δ2

[
δ2A

h
− 1

4

]
− 1

2δ
ξ + 1

2
(η + 1)2 − 1

4
ξ 2 (ξ → ∞). (59)

Condition (58) follows from the matching between the ‘inner’ solution in region II and the
solution in region III. Correspondingly, condition (59) follows from the matching of the ‘inner’
solution in region II to the solution (53) in region I. The matching condition (59) shows that
the constant A can be determined in the form

A = hδ−2(A0 + δA1 + δA2 + . . .) (60)

and the potential ϕ̂(ξ, η, δ) has to be sought as

ϕ̂(ξ, η, δ) = δ−2ϕ̂0(ξ, η) + δ−1ϕ̂1(ξ, η) + ϕ̂2(ξ, η) + . . . . (61)

Substituting (60) and (61) in Equations (55–59) and collecting the terms of the same order
with respect to δn, n = −2,−1, 0, . . ., we obtain at first order (n = −2):

A0 = 1

4
, ϕ̂0(ξ, η) ≡ 0 (62)

and at second order (n = −1):

∂2ϕ̂1

∂ξ 2
+ ∂2ϕ̂1

∂η2
= 0 (−1 < η < 0),

∂ϕ̂1

∂η
= 0 (η = −1, and η = 0, ξ < 0),

ϕ̂1 = 0 (η = 0, ξ > 0), (63)
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ϕ̂1 → 0 (ξ → +∞),

ϕ̂1 ∼ A1 − 1

2
ξ (ξ → −∞).

The solution of the boundary-value problem (63) was given by Noble [9, Chapter III, pp. 135–
136].

The function ϕ̂1(r, z) is not reproduced here. The solution exists if and only if

A1 = 1

π
log 2. (64)

Equations (53), (60), (62) and (64) define the second-order velocity potential in region I as

ϕ̂(r, z) = 1

4h
(R2 − r2) + R

π
log 2 + O(h). (65)

The added mass Ma is defined by Equations (43) and (44). Using the asymptotic formula (65)
and taking into account that the contribution of the ‘inner’ solution (61) to the added mass
is of the order O(ρhR2) and can he neglected compared to the contribution of solution (53),
which is of the order O(ρR4/h), with a relative error of O(δ2), we obtain

Ma = πρR4

8h

[
1 + 8 log 2

π
δ + O(δ2)

]
. (66)

Equations (47) and (65) show that the hydrodynamic pressure p�(r, z, t) depends weakly on
the vertical coordinate z and takes its maximal value at the plate center, where

p�(0, 0, t) = ρR2Fa(t)

4h(m + Ma)

[
1 + 4 log 2

π
δ + O(δ2)

]
. (67)

During the interaction stage the aerodynamic force Fa(t) is given by (28), where now the mass
of the falling body has to be substituted by M(m + Ma)/(M + m + Ma) and ε is given by
(48). Therefore

p�(0, 0, t) ≈ Psc
σ 2

(1 + σ )4
, (68)

Psc = 6

π

ρ

ρa

(
M

M + m + Ma

)2
(m + Ma)gH0

hR2

(
1 + 4 log 2

π

h

R

)
. (69)

Here σ = H(t)/(εH0) and t = T (τ∗ + εG(σ )), the function G(σ) is given by Equation (25),
The scale Psc of the impulsive pressure is proportional to the maximum of the hydrodynamic
pressure on the bottom of the liquid layer. Formulae (68) and (69) are simple enough to be used
at the design stage. Equation (69) shows that the hydrodynamic pressure due to the impact is
strongly dependent on the air density ρa. If the air is wet as in sea conditions, the pressures
will be smaller than in laboratory conditions.

In the case of infinite depth of the liquid Equations (47) and (48) are also valid. For a
circular floating plate ϕ̃(r, 0) = 2

π

√
R2 − r2 and Ma = 4

3ρR3. The pressure at the plate center
is given by (68), where Psc is now

Psc = 48

π2

ρ

ρa

(
M

M + m + Ma

)2
(m + Ma)gH0

R3
.
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Figure 7. Pressure at the center of the floating plate
in the case of the drop height of 15 cm and water
depth of 4 cm [1 kgf cm−2 = 9 · 81 × 104 Nm−2].

Figure 8. Pressure at the center of the floating plate in
the cases of the drop heights of (a) 51 cm, (b) 40 cm,
(c) 30 cm and water depth of 4 cm. Theoretical curves
are shown with solid line [1 kgf cm−2 = 9 · 81 × 104

Nm−2]. Experimental results by Ermanyuk [1] are for
the drop height of 51 cm (crosses and circles).

Theoretical predictions based on Equations (24), (25) and (68), (69) are compared to the
experimental results by Ermanyuk [1]. He measured the hydrodynamic pressure at the bottom
of the liquid layer just beneath the center of the floating plate (see Figure 1). The experiments
were performed under the following conditions: M = 2 kg, m = 0·22 kg, R = 10 cm,
ρ = 1000 kg m−3, ρa = 1·29 kg m−3, drop heights H0 = 15 cm and 51 cm, liquid depths
h = 2 cm and h = 4 cm. For almost each combination of the drop height and the liquid
depth the experiments were performed twice. In Figures 6, 7 and 8 the experimental results
are shown by circles and crosses and the theoretical results by solid lines. Experimental results
were recorded at the frequency of 10 KHz. It is seen that the simplified model presented in
this paper overpredicts the pressure maximum but describes quite reasonably the variation of
the pressure with time. The theoretical curves, in fact, are obtained by stretching Figure 3
in the horizontal direction by a factor T ε and in the vertical direction by a factor Psc (see
Equations (28) and (68)). In addition, theoretical curves for H0 = 40 cm and H0 = 30 cm
are shown in Figure 8. It is seen that variations of the drop height change mainly the pressure
magnitude but not so much the duration of the loads. This is because the time scale T ε of

the stage under consideration is proportional to H
− 1

2
0 and weakly depends on variations of

H0. The overestimation of the pressure magnitude in the developed theory may be due to the
simplified description of the acceleration stage, when the distance H(t) between the plates is
large. During this stage the falling-plate motion is governed by the gravity force and by both
the aerodynamic force and friction forces which are due to the presence of the guiding tube
in the experiments. The latter two forces are neglected in the present analysis. They can be
accounted for by reduction of the impact velocity

√
2gH0 at the beginning of the interaction

stage, which is by proper reduction of the drop height H0. Figure 8 shows that this may
be the case but other effects have also to be taken into account to provide a more accurate
description of the pressure peak. Among these effects compressibility and viscosity of the air,
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the resistance of the air outside the plates to the outflow from between the plates, elasticity of
the plates and the compressibility of the liquid should be mentioned.

5. Conclusion

A simple model has been presented to account for the presence of air between two colliding
circular plates. The obtained theoretical results describe well the evolution of the hydro-
dynamic pressure with time but overestimate its magnitude. Nevertheless, the theory can be
used at the design stage and for planning new experiments on floating-body impact. It would
be of importance to study this problem for bodies, the surfaces of which are not flat in the
impact region but convex/concave.

It should be noted that the air-cushion effect can be reduced by using a perforated falling
plate. In this case the collision will be rigid and high acoustic pressures in the liquid may
be expected. However, the impact velocity of the falling plate due to its perforation and the
corresponding dissipation of the body energy might be smaller than for a plate without holes.

The comparison of the theoretical results with the experimental ones shows that both
the air compressibility and viscosity have to be taken into account, in order to improve the
predictions.
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